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Identifying Relevant Data for a Biological Database:
Handcrafted Rules Versus Machine Learning

Aditya Kumar Sehgal, Sanmay Das, Keith Noto, Milton H. Saier, Jr. and Charles Elkan

Abstract— With well over one thousand specialized biological
databases in use today, the task of automatically identifying novel,
relevant data for such databases is increasingly important. In
this paper, we describe practical machine learning approaches
for identifying MEDLINE documents and Swiss-Prot/TrEMBL
protein records, for incorporation into a specialized biological
database of transport proteins named TCDB. We show that
both learning approaches outperform rules created by hand by
a human expert. As one of the first case studies involving two
different approaches to updating a deployed database, both the
methods compared and the results will be of interest to curators
of many specialized databases.

Index Terms— Bioinformatics (genome or protein) databases;
Clustering, classification, and association rules; text mining;
biomedical text classification; data mining.

I. INTRODUCTION

Rapid advances in sequencing technology have resulted in the
availability of large amounts of protein, RNA, and DNA data.
The need to organize this data has prompted the development
of large-scale, general-purpose databases such as Swiss-Prot,
Protein Data Bank (PDB) and NCBI GenBank. At the same time,
many specialized databases have been developed that contain
information about biomolecules that are related functionally,
structurally, and/or phylogenetically. The Nucleic Acids Research
journal lists 1,170 specialized databases as of the January 2009
update [13]. Examples of such databases include the Secreted
Protein Database [3], the Nuclear Protein Database [7], and
FlyBase [15]. Keeping these databases up-to-date is a significant
task. Currently, they are primarily curated manually, so a sig-
nificant amount of human time and labor goes into adding new
information to them.

New information typically comes either from the primary bio-
logical literature, or from existing broad biomolecular databases.
Browsing the literature or broad biological databases manually
for information has become infeasible as the volume of data has
grown. For example, MEDLINE, a database of approximately
17 million published articles related to the life sciences, adds
approximately 50,000 new articles each month, while Swiss-Prot,
a general protein database (http://ca.expasy.org/sprot), added over
100,000 new proteins in the first half of 2008. Therefore, devel-
oping automatic methods to identify new relevant information has
received considerable attention in recent years [10], [22].
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Most research on automated curation has been in the context
of evaluation challenges. For instance, the first task of the 2002
KDD Cup data mining contest was to automatically identify
articles that should be added to FlyBase [36]. Typically in
these challenges, a document dataset is released and researchers
have the opportunity to work on it and submit their relevance
judgments, which are compared with expert judgments to rate the
researchers’ systems. While the development of these challenges
has been a big step towards rigorous and systematic evaluation
of biomedical information retrieval systems, such systems are
still not widely deployed in practice. This is because practical
deployment involves an additional number of steps that are as
important as the development of the actual system that learns to
judge relevance. These include (i) the development of the training
corpus (including human decisions on the true labels for items),
(ii) appropriately assessing the performance of the final classifier
when labels are not available, and (iii) optimizing the workload of
experts so they do not end up doing more work than it takes to do
manual curation. These parts of the pipeline are taken care of by
the organizers in evaluation challenges. In real applications, these
considerations often dominate, and curators may choose to use
hand-coded rules rather than more flexible machine learning or
information retrieval systems. Such questions explain the recent
call for an increased focus on user evaluation from the biomedical
informatics community [16].

This paper addresses these problems in the context of a special-
ized database, the Transport Classification Database (TCDB) [29].
Our eventual goal is to automate the entire process of adding
new information to TCDB. The first task is to identify appro-
priate sources of new information, keeping in mind the issues
described above. In order to understand whether machine learning
approaches can bring real benefits to the curators of TCDB, we
develop and evaluate machine learning methods without asking
too much of human experts, and compare these with expert-
designed rules. We find that the machine learning approaches
have substantial benefits even without imposing an unreasonable
workload on experts. In particular, they perform significantly
better in terms of both precision and recall. To the best of our
knowledge, this paper is the first to compare rule-based and
machine learning approaches in the context of a real application.
This evaluation will be important for practitioners choosing an
approach on which to focus their efforts.

II. BACKGROUND

TCDB is a database that provides free access through the web
(http://www.tcdb.org) to comprehensive information on transport
proteins. A transport protein is a protein that imports or exports
molecules through the membrane of a cell or organelle. Currently,
TCDB contains information about over 6,000 distinct transport
proteins organized into more than 600 families, and compiled
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from over 5,000 published papers. Data are added to TCDB
continually as new functional information is published and new
transport systems are identified. A human expert reads through
published literature and identifies papers that describe transport-
related proteins of interest.1

If a newly identified protein is not homologous to a protein
that is already included in TCDB, or if it has a novel function,
then information relating to the protein’s amino acid sequence,
the organism in which it is found, its function, and relationship
to other proteins is imported into TCDB.

The first step towards automating the updating of TCDB is to
automate the selection of potential sources of new data. In addi-
tion to the primary literature, we also consider existing structured
general protein databases, in particular Swiss-Prot/TrEMBL. We
compare the accuracy of hand-crafted expert rules with that of
learned classifiers in distinguishing papers or database records
that are relevant to transmembrane transport from the rest.

While some tasks are best evaluated using a task-specific utility
measure (for instance, the document classification task in the 2005
TREC Genomics Track [17]), we use standard precision and recall
to evaluate our techniques for the sake of generality. Precision and
recall can be difficult to measure in the absence of a large set of
hand-labeled data. We describe our method for doing so in detail
in Section IV-B.

III. METHODS

A. Rule-Based Approaches

The rule-based approaches that we evaluate are classification
schemes designed by a domain expert. In this approach, records
from other protein databases are treated as sources of poten-
tially relevant information. We use the Swiss-Prot and TrEMBL
databases that are maintained by the Swiss Institute for Bioin-
formatics (SIB) and the European Bioinformatics Institute (EBI).
Swiss-Prot is a manually annotated database containing 230,150
protein records.2 A record consists of an official name for a
protein, its sequence, synonyms, gene name, taxonomy, published
references, references to other protein databases, as well as other
information. Some records also contain information extracted by
hand from associated publications. This information can include
functional descriptions and subcellular locations.

Importantly, records in Swiss-Prot contain keywords assigned
by human experts from a controlled vocabulary. The vocabulary
of keywords contained 865 entries in 2006, and still does in 2009;
the current list of keywords is available at http://www.expasy.org/
cgi-bin/keywlist.pl. The keywords assigned to a protein provide a
high level description of it. Example keywords include transport,
transmembrane, and ion transport.

Human experts also assign Gene Ontology (GO) [14] terms to
records. The Gene Ontology is a separate controlled vocabulary
composed of three different ontologies, namely Biological Pro-
cess, Molecular Function, and Cellular Component. It provides
terms to describe gene and gene product attributes, for example
GO:ammonium transport and GO:angiogenesis.

1The human expert for TCDB is Professor Milton H. Saier Jr., one of
the authors of this paper and the architect of the Transporter Classification
System.

2The May 5, 2009 version of Swiss-Prot contains 466,739 protein records.
Our experiments were done with the August 22, 2006 version which contains
230,150 records.

There is a known mapping between Swiss-Prot keywords and
GO terms [2]. However, this mapping is many-to-many and
partial: about 25% of keywords have no mapping to GO terms.

TrEMBL is a supplement to Swiss-Prot that contains records
for proteins that are not yet included in Swiss-Prot.3 These records
contain information similar to Swiss-Prot records. However, key-
words and GO terms are automatically assigned to TrEMBL
records and are hence less reliable on average than those in Swiss-
Prot records [23]. Additionally, Swiss-Prot is cross-referenced
with over 50 other databases, providing quick access to other
types of relevant information.

The goal is to distinguish automatically between relevant (in
our case, to TCDB) and irrelevant Swiss-Prot and TrEMBL
records. A record is relevant if and only if it describes a
transmembrane transporter protein. We evaluate two handcrafted
rule-based methods for this task. Both methods use the metadata
information (keywords and GO terms) previously described. Of
the 230,150 records in the August 22, 2006 Swiss-Prot release,
198,613 have been assigned keywords and 28,958 have been
assigned GO terms. Only 2,579 records (under 1.2%) have neither
keywords nor GO terms. In the August 22, 2006 version of
TrEMBL, 948,399 records have keywords assigned and 1,795,208
have GO terms assigned; 338,328 (about 11%) have neither. Most
records in Swiss-Prot have keywords but this is not the case for
TrEMBL, which is to be expected as only the former is manually
annotated. Interestingly, a higher percentage of TrEMBL records
have GO terms.

TCDB contains 3,226 unique proteins as of August 4, 2006,
with a unique accession number for each one that points to a
record in an external database. 3,205 accession numbers point to
Swiss-Prot or TrEMBL records, while 21 point to other databases
including NCBI, GenBank, and PDB. We ignore these 21 proteins
in this paper; given their small number, this choice has no
significant impact on our results. Of the 3,205 linked records
in Swiss-Prot or TrEMBL, 6 have been deleted due to incorrect
data. Henceforth, when we refer to proteins in TCDB, we mean
the 3,199 proteins that have valid Swiss-Prot or TrEMBL records.

Of the 3,199 proteins, 2,088 have Swiss-Prot records and 1,111
have TrEMBL records. 2,823 have keywords assigned and 1,385
have GO terms assigned; 129 (about 4%) have neither. We use
two different rule-based methods to identify relevant records. Both
involve matching keywords or terms associated with a record to
keywords or terms indicative of transport. We consider only exact
matches for keywords and terms, since these come from restricted,
controlled vocabularies.

The term transport (GO:0006810) is the ancestor of all
transport-related terms in the Biological Process ontology. It is
defined as “The directed movement of substances (such as macro-
molecules, small molecules, ions) into, out of, within or between
cells.” Similarly, the term transporter activity (GO:0005215) is the
ancestor of all transport-related terms in the Molecular Function
ontology. It is defined as “Enables the directed movement of
substances (such as macromolecules, small molecules, ions) into,
out of, within or between cells”. No directly comparable ancestor
term exists in the Cellular Component ontology. While this on-
tology contains the term membrane, which encompasses proteins
associated with the cell membrane, it may be assigned to non
transmembrane transporter proteins, such as Guanine nucleotide-

3The August 22, 2006 version of TrEMBL contains 3,081,935 protein
records.
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binding protein G(t) subunit alpha-1, which is a transmembrane
protein that functions as a signal transducer rather than a trans-
porter.

Rule 1: This rule says that a record is relevant if and only if
any GO term in the record is transport or transporter activity, or
either of these terms is an ancestor in the GO hierarchy of any
GO term in the record.

For the second rule, the human expert has classified the
keywords assigned to a Swiss-Prot or TrEMBL record into three
sets listed in Table I. Keywords in set 1 are the best indicators of
transmembrane transporter activity, so they are deemed sufficient
to predict relevance. Keywords in sets 2 and 3 also indicate rele-
vance but are not sufficient by themselves. To predict relevance,
they must be augmented by additional keywords, transport in the
case of set 2 and transmembrane in the case of set 3. Note that the
term transport by itself is too broad to accurately identify proteins
involved in transmembrane transport. Such a query will result in
many false positives, such as ‘PDCD6-interacting protein’ and
‘Autophagy-related protein 12’ which are bulk transport proteins
and not transmembrane transporters.

Rule 2: This rule says that a record is relevant if and only if
at least one of the following conditions is true:

• The record has any keyword in set 1.
• The record has the keyword transport and any keyword in

set 2.
• The record has the keyword transmembrane and any key-

word in set 3.
• The record has any keyword corresponding to a GO term

that is or has an ancestor in the GO ontology that is the
term transport or transporter activity.

Note that Rule 1 only looks at the GO terms in a record,
while Rule 2 only looks at the keywords in a record. Therefore,
neither rule is a special case of the other one. Rule 2 uses the
correspondence between keywords and GO terms [2], but Rule 1
does not.

Rule-based methods for annotating proteins based on infor-
mation in Swiss-Prot records have been described in the prior
literature (e.g. Kretschmann et al. [23]). That research is similar
in some ways to ours, but there are major differences. The goal
of Kretschmann et al. is to assign keywords to proteins in the
TrEMBL database using rules learned from particular information
in Swiss-Prot records. They utilize machine learning algorithms
to learn rules from the basic data (taxonomic and sequence
information) present in Swiss-Prot records. Each rule outputs
a single keyword based on the basic data of the protein to be
annotated (in TrEMBL). In contrast, our goal is to create rules that
utilize a protein record’s annotation data to discriminate between
transmembrane transport related proteins and other proteins. Un-
like Kretschmann et al., our rules have been manually designed
by a domain expert. Also, while the overall research goal of
Kretschmann et al. was to learn rules, our research goal is to
compare documents and database records as possible sources of
data for transmembrane transport proteins.

B. Learning to Classify MEDLINE Documents
For this approach, we consider published articles in the primary

literature as a source of potentially relevant information to be
added to TCDB. A document is relevant if it contains information
on proteins related to transmembrane transport and irrelevant
otherwise.

TABLE I
THREE SETS OF KEYWORDS USED IN RULE 2.

Keyword set 1

Ion transport, sugar transport, amino-acid transport, symport, sodium
transport, ionic channel, hydrogen, ion transport, potassium transport,
porin, antiport, phosphotransferase system, voltage-gated channel,
peptide transport, calcium channel, tonB box, potassium channel, zinc
transport, sodium channel, copper transport, neurotransmitter transport,
chloride channel, phosphate transport, bacteriocin transport, signal
recognition particle, sulfate transport, gap junction, cobalt transport,
ammonia transport, polysaccharide transport, nickel transport,
sodium/potassium transport, phosphonate transport.

Keyword set 2 (In combination with “transport”)

Membrane, transmembrane, antimicrobial, antibiotic, antibiotic
resistance, heme, molybdenum, nickel, antibiotic, cytochrome c-type
biogenesis, decarboxylase, cadmium resistance, cadmium, hormone,
arsenical resistance, plant toxin, neurotoxin, anion exchange, chromate
resistance, bacteriochlorophyll, tungsten, mercury, enterotoxin, vitamin
A, thyroid hormone, selenium, mercuric resistance, hemagglutinin,
folate-binding, bacteriocin immunity.

Keyword set 3 (In combination with “transmembrane”)

Protein transport, electron transport, iron transport, calcium transport,
lipid transport.

We restrict ourselves to the documents in MEDLINE, which
currently contains data on over 17 million documents, and fur-
thermore we consider only the subset of 557,458 that contain the
term “protein” in the title or abstract and come from one of 108
journals selected by a human expert.4 We consider this subset of
documents to be our universe. The rest of MEDLINE is excluded
from consideration. This greatly limits the scope our search for
relevant documents, at a risk of omission considered low by the
human expert.

Training a classifier normally requires a set of example docu-
ments that are known to be positive and a set of documents that
are known to be negative. We use 3,168 MEDLINE documents
referenced by TCDB as the positive training set. Unfortunately,
no curated set of negative example documents is available; a
similar difficulty occurs with numerous other text classification
tasks also. Learning from positive and unlabeled examples is
an important research question that has received a great deal of
attention (e.g. [8], [9], [12], [25], [37]). Methods for learning
with unlabeled examples include using a biased classifier [24],
one-class SVMs [32], [33], and transductive SVMs [21].

We use a random sample of documents from the universe
as the negative training set. Even though the random sample
must include some positive examples (we estimate about 5%),
this procedure is justified. We have shown in previous research
that classifiers trained using unlabeled documents as negative
examples can rank documents as accurately as classifiers trained
with actual negative examples. For a thorough explanation and
evaluation of this approach, with comparisons to alternative
methods, see [11].

Specifically, we randomly select 6,336 documents (twice the
number of positive documents) that are not in TCDB, from the

4There were 557,458 such documents on July 6, 2006, when these experi-
ments were carried out.
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universe of 557,458 documents to serve as the negative training
set. Choosing twice the number of positive documents is a
design decision that balances the competing needs of getting a
comprehensive sample of the population and avoiding problems
known to be associated with trying to learn a classifier on highly
skewed training data (classifiers can be tuned after training to
deal with differently balanced test sets by tweaking parameters,
but having too many negatives in the training set can lead to a
loss in discriminative ability), as well as the practical aspects of
downloading many MEDLINE records.

Distinguishing between relevant and irrelevant documents is a
text categorization task, which is a well-known research problem
in computer science [34]. In addition to domain-independent
methods, specialized methods for classifying biomedical docu-
ments have been proposed that incorporate information from out-
side the documents, such as from the Unified Medical Language
System [18] or from the Web [4]. Other methods use special
information within documents such as figure captions [28] and
image data [35]. Although all these methods could be useful here,
we begin by evaluating two standard classification methods that
are applied to documents represented as “bags of words,” i.e.
vectors of features based on individual word counts. The vector
components we use are words from the document’s title and
abstract, and terms from the medical subject headings (MeSH)
and chemical abstracts service (CAS) vocabularies that have
been assigned to the document. We divide each document’s title
and abstract into individual words and we group multi-word
MeSH and CAS terms into phrases. We stem individual words
and we filter out common English words. Following [19] and
many others, we apply a version of the tfidf weighting procedure
described by [31]. Specifically, the feature value fij for a word i
in document j is

fij = log(1 +
nij

Dj
)× log(

C
Ci

)

where nij is the number of occurrences of word i in document j,
Dj is the number of words in document j, C is the total number of
documents, and Ci is the number of documents that contain word
i. Other document representations and term weighting techniques
yield results similar to those below, so they are not described in
this paper.

For the classifier, we use a support vector machine (SVM).
Specifically, we use the SVM-Light package of SVMs [20]. We
use the SMART IR system [30] to index documents and create
document vectors from the weighted index terms to provide as
input to SVM-Light.5

C. Learning to Classify Database Records
The third approach that we evaluate is training a classifier

on Swiss-Prot records. These experiments are published and
described in detail in [6], so we only summarize the method here.
As mentioned above, each Swiss-Prot record consists of a protein
name, titles of related publications, human-annotated comments,
curator-assigned keywords, and GO terms, among other things.

5We also evaluated the naı̈ve Bayes classifier, using the Rainbow
toolkit [26]. Initial experiments show that SVMs consistently have a lower
false positive rate. Because it has higher precision, the SVM classifier is more
likely to satisfy the experts who maintain TCDB, whose immediate need is
to reduce their workload by narrowing the number of papers they must read,
even at the potential cost of missing some relevant papers. Thus we report
results based on the SVM classifier.

We consider each record to be a document, and employ a bag-
of-words representation, similar to the one described above for
MEDLINE documents. We use a maximum-entropy classifier,
implemented as part of the MALLET toolkit [27].6

For the experiments classifying Swiss-Prot records, the positive
training set consists of 2,453 Swiss-Prot records mentioned in
TCDB as of September 23, 2006. The negative training set
consists of 4,906 Swiss-Prot records (twice the number of positive
examples, following the methodology above) selected randomly
from the set of Swiss-Prot records for proteins not present in
TCDB. Strictly speaking, these examples are unlabeled, although
we know most are negative. However, as described in [6], our
methods involve labeling false positives iteratively, so the negative
training set is highly accurate and contains very few remaining
actual positive examples, if any.

IV. EXPERIMENTS

A. Relevance
Eventually, we wish to develop methods that update TCDB

automatically in a way that satisfies the biologists who currently
do the task manually. This paper focuses on the first step of
the updating process, which is to identify sources describing
proteins and the novel information about them that should be
included in the database. Ideally, our methods would find all
proteins that should be included in TCDB, without finding any
proteins that a human expert would deem unfit for inclusion. A
protein must at least be involved in transmembrane transport to
be included in this database. However, there are many reasons
why a transport protein is not included in TCDB, for instance
because it is homologous and performs the same function as a
protein already in TCDB, it is not sufficiently well characterized
functionally, or the information about it is not published in a
well-established journal.

For the purposes of evaluation, we adopt a simple definition of
relevance: A document or database record is relevant if contains
information about any protein related to transmembrane transport.
However, we also consider the notion that we call “particularly
interesting” proteins in our discussion in Section V. These are
transport-related proteins that are judged by the human expert to
be the most valuable additions to TCDB.

B. Measuring Precision and Recall
To evaluate the success of the approaches we consider, we

begin with the standard notions of precision and recall from the
information retrieval literature.

Measuring precision and recall properly when gold standard
data is absent or costly to obtain is a non-trivial problem that is
starting to receive significant attention in the literature [1]. This
question has also been asked in the context of biomedical infor-
mation retrieval tasks. In particular, [5] considers a combination
of manual labeling by experts and bootstrapping “weak labels”
from existing datasets for a relational learning problem, but they
do not consider the recall problem in the detail we do here.

Our task uses the relevance judgments of a human expert as
the gold standard. For each example retrieved by any method,
the human expert indicates whether or not it is genuinely about a

6MALLET also has an implementation of naı̈ve Bayes but the discrimina-
tive MaxENT model proved to have superior precision in initial experiments.
See [6] for details.
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Fig. 1. A Venn diagram showing the classes of examples (i.e. MEDLINE
documents or Swiss-Prot/TrEMBL protein records) in this project. Examples
in R are relevant (in our case, to TCDB). Examples in P are predicted to be
relevant by a classifier, i.e. P ∩R represents the set of examples discovered
by the classifier, P \ R represents false positives, and R \ P represents
false negatives. T is the set of examples that are already in a specialized
database (TCDB). I represents the set of examples that are particularly
interesting. These are relevant, novel and scientifically important examples
that are especially valuable, as discussed in Section V. F represents a set
of future examples. In our experiments, these are sampled randomly. The
shaded area, F ∩P , is the set of examples that the human expert must review
and classify. Some of the relevant examples will be added to the database,
represented by the set A. A equals F ∩ P ∩ I plus part of F ∩ P ∩R. Not
all of F ∩P ∩R will necessarily be added to TCDB because we do not add
new examples to TCDB if they correspond to proteins that are homologous
to ones already in the database.

protein related to transmembrane transport, regardless of whether
the protein is homologous to a protein already in TCDB, or might
otherwise be unsuitable for inclusion in the database.

Consider the Venn diagram in Figure 1. Here, the set R refers
to the set of relevant documents. the set P refers to the set
of documents that are predicted to be relevant by a classifier.
Precision, |P ∩ R|/|P |, and recall, |P ∩ R|/|R|, are difficult
to measure because most MEDLINE documents and Swiss-Prot
records are not labeled as relevant or irrelevant.

To measure precision and recall, we perform two separate
experiments. For measuring precision we obtain a sample of
unlabeled examples, F in Figure 1. After the classifier makes its
predictions, the human expert labels the examples in this set that
are predicted to be positive (F ∩P , the shaded area in Figure 1).
Precision is then computed as |F ∩ P ∩R|/|F ∩ P |.

Unfortunately, we do not have a similar way to measure
recall without labeling the entire set F , which would require
prohibitively large effort from a human expert. Therefore, to
measure recall we use cross-validation. TCDB itself provides the
set of known relevant examples, since examples are guaranteed to
be relevant if they actually are included in TCDB. Specifically, we
divide the entire training set into ten equal parts, each maintaining
the original positive/negative ratio. Ten times, we train a classifier
on nine parts and test on the remaining part. Recall is then
measured with test set examples only, as |T ∩P |/|T |, where T is
the set of examples (documents or protein records) in TCDB, and
P is the set of examples predicted to be relevant by the classifier.

TABLE II
OBSERVED PRECISION BASED ON CLASSIFYING RANDOMLY SELECTED

TEST EXAMPLES.
Method Test Set Predictions Correct Precision

Size
Rule 1 1,000 101 68 0.673
Rule 2 1,000 77 60 0.779
Learned Record
Classifier 4,906 278 192 0.691
Document
Classifier 1,000 62 51 0.823

TABLE III
OBSERVED RECALL BASED ON CLASSIFYING EXAMPLES IN TCDB

(HENCE CERTAINLY RELEVANT). NUMBERS VARY BECAUSE EXAMPLES

ARE EITHER SWISS-PROT RECORDS OR MEDLINE DOCUMENTS, AND

EXPERIMENTS WERE CARRIED OUT AT DIFFERENT TIMES.
Method Examples Correct Recall

in TCDB
Rule 1 2,088 1,534 0.735
Rule 2 2,088 1,492 0.715
Learned Record Classifier 2,453 2,193 0.894
Document Classifier 3,168 2,715 0.857

C. Results

1) Handcrafted Rule-Based Classifiers: To measure precision,
we select random examples from the same distribution as our
training sets, not including those examples that are in TCDB
(training and evaluation sets are always made to be mutually
exclusive). In the case of our rule-based methods, we randomly
select 1,000 Swiss-Prot records. We use only Swiss-Prot records
because they are more likely to be well-characterized and there-
fore better suited to the goals of updating TCDB. For each Swiss-
Prot record predicted to be relevant, a human expert determines
whether or not it describes a protein related to transmembrane
transport. 101 of the 1,000 Swiss-Prot records matched Rule 1
(GO terms transport or transporter activity). The human expert
considers 68 of these to be actually transport-related (a precision
of 0.673). 77 of the 1,000 records matched Rule 2 (having a
combination of keywords). The human expert considers 60 of
these to be transport-related (a precision of 0.779).

Both rules fail to recognize at least 25% of records known
to be relevant. Specifically, Rule 1 matches 1,534 of the 2,088
Swiss-Prot records present in TCDB (a recall of 0.735) while
Rule 2 matches 1,492 (a recall of 0.715) of these records. Rule 1
matches a further 678 of 1,111 TrEMBL records present in TCDB
(recall=0.610) and Rule 2 matches 649 (0.584). As mentioned in
Section III-A, 129 of the 3,199 total records (about 4%) contain
neither keywords nor GO terms, hence cannot be recognized.

Rule 2 fails to retrieve many records with a keyword in
set 3 because the records have not been assigned the keyword
transmembrane. This reveals the incompleteness of protein an-
notations. Consider the keyword electron transport, which is in
keyword set 3. Electrons can be transported within the cell as
well as across cell membranes, so to remove ambiguity it is
necessary for the keyword transmembrane to be assigned also, if it
is appropriate. However, many records labeled electron transport
that should be labeled transmembrane also are not so labeled.
The same is true for other keywords such as protein transport
and lipid transport.
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TABLE IV
COMPUTED F1 VALUES FOR ALTERNATIVE CLASSIFIERS.

Method F1
Rule 1 0.703
Rule 2 0.745
Learned Record Classifier 0.779
Document Classifier 0.839

2) Learned Protein Database Record Classifier: In the case
of our learned protein record classifier, we use the set of 4,906
randomly-selected Swiss-Prot records described in [6]. These
records are used as training data, so we use cross-validation to
evaluate them as test set results. 278 of the 4,906 records were
predicted to be relevant. After the human expert labeled all of
them, 192 turned out to be relevant, which is a precision of
0.691. Cross-validation experiments predict 2,193 of the 2,453
Swiss-Prot records in TCDB to be positive, for a recall of 0.894.

When the human expert examines the positive predictions and
labels them as relevant or irrelevant, the set of labeled examples
that can be used for training increases in size. Although here, we
aim only to measure the accuracy of a classifier on held-aside data
representing future instances, it is worth noting that by iteratively
collecting labels and retraining the classifier, we can improve its
accuracy by a significant amount [6].

3) Learned Document Classifier: In the case of the MEDLINE
document classifier, we randomly choose 1,000 documents from
the universe of MEDLINE documents described previously, i.e.
that contain the word “protein” and come from the set of
108 journals recommended by the human expert. Of the 1,000
documents, the classifier predicted 62 to be relevant. The human
expert reviewed all of these, and 51 were judged to be relevant,
which is a precision of 0.823. Using cross-validation to classify
documents in TCDB, 2,715 of the 3,168 MEDLINE documents
included in TCDB are predicted to be positive for a recall of
0.857.

All measures of precision and recall are summarized in Ta-
bles II and III, respectively. In order to evaluate precision and
recall on the same types of records, results in Table III are based
only on Swiss-Prot (not TrEMBL) records. No method dominates
the others in terms of both precision and recall.

One way of ranking the methods is by their F1 scores (Ta-
ble IV). F1, a commonly used statistic, is the harmonic mean of
precision and recall ( 2×P×R

P+R ). Since we estimate precision and
recall using different sets of examples, the usual tradeoff between
precision and recall may not be reflected in the F1 scores we
report. Therefore, they may not be directly comparable to F1
scores reported in other papers. However, they are meaningful
for comparing the methods described in this paper.

V. DISCUSSION

Precision and recall results are important indicators, but they
are not the only way to gauge success. Future users will be
concerned with whether or not the methods can identify espe-
cially novel and interesting documents or records. During the
manual evaluation of the SVM classifier, the expert identified
11 documents (18% of 62 retrieved documents, and 22% of the
51 identified as relevant by the expert) as particularly interesting
(I in Figure 1). Similarly, using Rule 2, the expert identified 12
Swiss-Prot or TrEMBL records (16% of the 77 retrieved records,

and 20% of the 60 identified as actually relevant) as particularly
interesting. These examples are interesting because the expert
was not previously aware of the proteins mentioned in these
documents or records, or because these proteins belong to a new
class of proteins not yet included in TCDB. All of these examples
are more valuable to TCDB than the other relevant examples.
In fact, a new class of toxin proteins (Transport Classification
8.B) that target transport proteins was added to TCDB as a direct
result of the particularly interesting articles about them that were
discovered during this research. This ability to detect truly novel
relevant proteins is a success for our methods.

An important advantage of the handcrafted methods is that
the rules used to query the database are easily comprehensible
to humans, while at the same time providing high precision
in manual evaluations. However, our results indicate that the
machine learning methods are able to predict relevance with even
higher precision.

The classifier trained on MEDLINE documents has high preci-
sion also, but it is typically more difficult to import information
from documents into a database than it is to import information
from another database, since in the former case the information
needs to be extracted from the text of a paper. However, the use
of MEDLINE documents has the advantage that new information
is made available sooner. Papers are often available months
before the corresponding protein data makes it into Swiss-Prot or
TrEMBL. It is worth noting also that there can be papers that are
about more than one protein, thus making some papers potentially
more valuable than others. This should be taken into account when
choosing a method for updating a specialized database.

In our experiments to measure precision, the human expert
reviewed and labeled all of the classifiers’ predictions. However,
a further advantage of machine learning approaches over fixed
rules like the ones evaluated here is that many classifier-learning
algorithms (including all the ones mentioned and used here) can
be used to score and rank predictions in terms of their likelihood
of relevance. This means that the curators of a specialized
database are able to tune the recall/precision tradeoff, for instance
by reviewing predictions only until the false positive rate gets too
high.

VI. CONCLUSIONS AND CURRENT STATUS

This paper shows the value of machine learning methods
for updating specialized databases. Many research groups have
focused on developing good algorithms for similar tasks, but there
has been a paucity of evidence that machine learning approaches
outperform simpler rule-based systems in real case studies. By
performing such a comparison in the context of TCDB, this paper
demonstrates both the utility of the machine learning approach
and principled methods for performing comparisons between
different approaches.

We have deployed our classifiers to create working systems.
These systems are always online in the sense that training and
deployment data are constantly being updated with new training
labels from TCDB and new examples from MEDLINE or Swiss-
Prot. The document classification system and protein record
classification system use up-to-date article references in TCDB
and protein records in TCDB, respectively, as positive training
data. They use new MEDLINE articles and new Swiss-Prot
records, respectively, as unlabeled training data. The workflow
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Fig. 2. TCDB update process workflow. Documents of all labels are used
to train the classifier. Positive examples are obtained from TCDB, negative
examples are articles previously rejected by the human expert. Unlabeled
articles are ranked according to the likelihood of relevance by the classifier and
then deployed to the human expert, who labels the documents and incorporates
the relevant ones into TCDB.

for the MEDLINE document classification process is shown in
Figure 2.

After either classifier is run, each example (article or protein
record) is assigned a score proportional to the likelihood of
relevance to TCDB. The examples with the top-ranking scores
are delivered to the human expert for examination. It takes
either system approximately 2.5 hours to download data, retrain
a classifier from scratch, and rank all examples. We run the
system overnight so that up-to-date predictions are available on
demand. The system is run on a 2GHz Power Mac computer with
2 GB RAM and running Apple OS X.

In the past few years, the automated systems have identified
thousands of new proteins that have been added to TCDB. The
last year has been the fastest period of growth in TCDB’s history,
and nearly all of the articles and proteins that have been added
to TCDB were found by the automated systems.
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